NT




The Pragmatic
Programmer

YOUR JOURNEY TO MASTERY

BY DAVE THOMAS, ANDY HUNT

Version: P1.0 (September 13, 2019)



Many of the designations used by manufacturers
and sellers to distinguish their products are
claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of
a trademark claim, the designations have been
printed with initial capital letters or in all capitals.
"The Pragmatic Programmer" and the linking g
device are trademarks of The Pragmatic
Programmers, LLC.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no
responsibility for errors or omissions. No liability
is assumed for incidental or consequential
damages in connection with or arising out of the
use of the information or programs contained
herein.

For information about buying this title in bulk
quantities, or for special sales opportunities (which
may include electronic versions; custom cover
designs; and content particular to your business,
training goals, marketing focus, or branding
interests), please contact our corporate sales
department at corpsales@pearsoned.com or

(800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com. For questions
about sales outside the U.S., please contact
intles@pearson.com. Visit us on the Web:


mailto:corpsales@pearsoned.com
tel:+18003823419
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

informit.com/aw
Library of Congress Control Number: 2019944178

Copyright © 2020 Pearson Education, Inc.
Cover images: Mihalec/Shutterstock,
Stockish/Shutterstock

All rights reserved. This publication is protected by
copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For
information regarding permissions, request forms
and the appro- priate contacts within the Pearson
Education Global Rights & Permissions
Department, please visit
www.pearsoned.com/permissions.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2


../../../../../https@informit.com/aw
../../../../../https@www.pearsoned.com/permissions/default.htm

For Juliet and Ellie,
Zachary and Elizabeth,
Henry and Stuart



> W N

Table of Contents

Foreword

Preface to the Second Edition
1. How the Book Is Organized

2. What’s in a Name?

3. Source Code and Other Resources
4. Send Us Feedback
5

. Second Edition Acknowledgments

From the Preface to the First Edition
. Who Should Read This Book?

—

2. What Makes a Pragmatic Programmer?
3. Individual Pragmatists, Large Teams
4

. It’s a Continuous Process

. 1. A Pragmatic Philosophy

. Topic1. It’s Your Life

Topic2. The Cat Ate My Source Code
Topic 3. Software Entropy

Topic 4. Stone Soup and Boiled Frogs



Topic 5.

Topic 6.

Topic 7.

Good-Enough Software
Your Knowledge Portfolio

Communicate!

2. A Pragmatic Approach

. Topic 8.

Topic 9.

Topic 10.
Topic 11.
Topic 12.
Topic 13.
Topic 14.

Topic 15.

The Essence of Good Design
DRY—The Evils of Duplication
Orthogonality

Reversibility

Tracer Bullets

Prototypes and Post-it Notes
Domain Languages

Estimating

3. The Basic Tools

. Topic 16
Topic 17.
Topic 18.
Topic 19.
Topic 20.
Topic 21.

Topic 22.

. The Power of Plain Text
Shell Games

Power Editing

Version Control
Debugging

Text Manipulation

Engineering Daybooks

4. Pragmatic Paranoia

. Topic 23

Topic 24

. Design by Contract

. Dead Programs Tell No Lies



© N o v~ W N

Topic 25. Assertive Programming
Topic 26. How to Balance Resources

Topic 27. Don’t Outrun Your Headlights

5. Bend, or Break

. Topic 28. Decoupling

Topic 29. Juggling the Real World
Topic 30. Transforming Programming
Topic 31. Inheritance Tax

Topic 32. Configuration

6. Concurrency

. Topic 33. Breaking Temporal Coupling

Topic 34. Shared State Is Incorrect State
Topic 35. Actors and Processes

Topic 36. Blackboards

7. While You Are Coding

. Topic 37. Listen to Your Lizard Brain

Topic 38. Programming by Coincidence
Topic 39. Algorithm Speed

Topic 40. Refactoring

Topic 41. Test to Code

Topic 42. Property-Based Testing

Topic 43. Stay Safe Out There

Topic 44. Naming Things



—

> W N

A S

. Topic 45.

Topic 46.

Topic 47.

Topic 48.

. 8. Before the Project

The Requirements Pit
Solving Impossible Puzzles
Working Together

The Essence of Agility

9. Pragmatic Projects

Topic 49.

Topic 50.

Topic 51.

Topic 52.

Topic 53.

Pragmatic Teams
Coconuts Don’t Cut It
Pragmatic Starter Kit
Delight Your Users

Pride and Prejudice

10. Postface

A1. Bibliography

A2. Possible Answers to the Exercises

Copyright © 2020 Pearson Education, Inc.



Praise for the second edition of
The Pragmatic Programmer

Some say that with The Pragmatic Programmer, Andy and
Dave captured lightning in a bottle; that it’s unlikely anyone
will soon write a book that can move an entire industry as it
did. Sometimes, though, lightning does strike twice, and this
book is proof. The updated content ensures that it will stay
at the top of “best books in software development” lists for
another 20 years, right where it belongs.

VM (Vicky) Brasseur

Director of Open Source Strategy, Juniper Networks

If you want your software to be easy to modernize and
maintain, keep a copy of The Pragmatic Programmer close.
It’s filled with practical advice, both technical and
professional, that will serve you and your projects well for
years to come.

Andrea Goulet

CEO, Corgibytes; Founder, LegacyCode.Rocks



The Pragmatic Programmer is the one book I can point to
that completely dislodged the existing trajectory of my
career in software and pointed me in the direction of
success. Reading it opened my mind to the possibilities of
being a craftsman, not just a cog in a big machine. One of
the most significant books in my life.

Obie Fernandez

Author, The Rails Way

First-time readers can look forward to an enthralling
induction into the modern world of software practice, a
world that the first edition played a major role in shaping.
Readers of the first edition will rediscover here the insights
and practical wisdom that made the book so significant in
the first place, expertly curated and updated, along with
much that’s new.

David A. Black

Author, The Well-Grounded Rubyist

I have an old paper copy of the original Pragmatic
Programmer on my bookshelf. It has been read and re-read
and a long time ago it changed everything about how I
approached my job as a programmer. In the new edition
everything and nothing has changed: I now read it on my
iPad and the code examples use modern programming



languages—but the underlying concepts, ideas, and attitudes
are timeless and universally applicable. Twenty years later,
the book is as relevant as ever. It makes me happy to know
that current and future developers will have the same
opportunity to learn from Andy and Dave’s profound
insights as I did back in the day.

Sandy Mamoli

Agile coach, author of How Self-Selection Lets People Excel

Twenty years ago, the first edition of The Pragmatic
Programmer completely changed the trajectory of my
career. This new edition could do the same for yours.

Mike Cohn

Author of Succeeding with Agile,
Agile Estimating and Planning, and
User Stories Applied



Foreword

I remember when Dave and Andy first tweeted about the new
edition of this book. It was big news. I watched as the coding
community responded with excitement. My feed buzzed with
anticipation. After twenty years, The Pragmatic Programmer is
just as relevant today as it was back then.

It says a lot that a book with such history had such a reaction. I
had the privilege of reading an unreleased copy to write this
foreword, and I understood why it created such a stir. While it’s
a technical book, calling it that does it a disservice. Technical
books often intimidate. They’re stuffed with big words, obscure
terms, convoluted examples that, unintentionally, make you feel
stupid. The more experienced the author, the easier it is to
forget what it’s like to learn new concepts, to be a beginner.

Despite their decades of programming experience, Dave and
Andy have conquered the difficult challenge of writing with the
same excitement of people who’ve just learned these lessons.
They don’t talk down to you. They don’t assume you are an
expert. They don’t even assume you’ve read the first edition.
They take you as you are—programmers who just want to be
better. They spend the pages of this book helping you get there,
one actionable step at a time.



To be fair, they’d already done this before. The original release
was full of tangible examples, new ideas, and practical tips to
build your coding muscles and develop your coding brain that
still apply today. But this updated edition makes two
improvements on the book.

The first is the obvious one: it removes some of the older
references, the out-of-date examples, and replaces them with
fresh, modern content. You won’t find examples of loop
invariants or build machines. Dave and Andy have taken their
powerful content and made sure the lessons still come through,
free of the distractions of old examples. It dusts off old ideas like
DRY (don’t repeat yourself) and gives them a fresh coat of paint,
really making them shine.

But the second is what makes this release truly exciting. After
writing the first edition, they had the chance to reflect on what
they were trying to say, what they wanted their readers to take
away, and how it was being received. They got feedback on
those lessons. They saw what stuck, what needed refining, what
was misunderstood. In the twenty years that this book has made
its way through the hands and hearts of programmers all over
the world, Dave and Andy have studied this response and
formulated new ideas, new concepts.

They’ve learned the importance of agency and recognized that
developers have arguably more agency than most other
professionals. They start this book with the simple but profound
message: “it’s your life.” It reminds us of our own power in our
code base, in our jobs, in our careers. It sets the tone for
everything else in the book—that it’s more than just another
technical book filled with code examples.



What makes it truly stand out among the shelves of technical
books is that it understands what it means to be a programmer.
Programming is about trying to make the future less painful. It’s
about making things easier for our teammates. It’s about getting
things wrong and being able to bounce back. It’s about forming
good habits. It’s about understanding your toolset. Coding is
just part of the world of being a programmer, and this book
explores that world.

I spend a lot of time thinking about the coding journey. I didn’t
grow up coding; I didn’t study it in college. I didn’t spend my
teenage years tinkering with tech. I entered the coding world in
my mid-twenties and had to learn what it meant to be a
programmer. This community is very different from others I'd
been a part of. There is a unique dedication to learning and
practicality that is both refreshing and intimidating.

For me, it really does feel like entering a new world. A new
town, at least. I had to get to know the neighbors, pick my
grocery store, find the best coffee shops. It took a while to get
the lay of the land, to find the most efficient routes, to avoid the
streets with the heaviest traffic, to know when traffic was likely
to hit. The weather is different, I needed a new wardrobe.

The first few weeks, even months, in a new town can be scary.
Wouldn'’t it be wonderful to have a friendly, knowledgeable
neighbor who’d been living there a while? Who can give you a
tour, show you those coffee shops? Someone who’d been there
long enough to know the culture, understand the pulse of the
town, so you not only feel at home, but become a contributing
member as well? Dave and Andy are those neighbors.

As a relative newcomer, it’s easy to be overwhelmed not by the



act of programming but the process of becoming a programmer.
There is an entire mindset shift that needs to happen—a change
in habits, behaviors, and expectations. The process of becoming
a better programmer doesn’t just happen because you know
how to code; it must be met with intention and deliberate
practice. This book is a guide to becoming a better programmer
efficiently.

But make no mistake—it doesn’t tell you how programming
should be. It’s not philosophical or judgmental in that way. It
tells you, plain and simple, what a Pragmatic Programmer is—
how they operate, and how they approach code. They leave it up
to you to decide if you want to be one. If you feel it’s not for you,
they won’t hold it against you. But if you decide it is, they’re
your friendly neighbors, there to show you the way.

> Saron Yitbarek

Founder & CEO of CodeNewbie

Host of Command Line Heroes

Copyright © 2020 Pearson Education, Inc.



Preface to the Second Edition

Back in the 1990s, we worked with companies whose projects
were having problems. We found ourselves saying the same
things to each: maybe you should test that before you ship it;
why does the code only build on Mary’s machine? Why didn’t
anyone ask the users?

To save time with new clients, we started jotting down notes.
And those notes became The Pragmatic Programmer. To our
surprise the book seemed to strike a chord, and it has continued
to be popular these last 20 years.

But 20 years is many lifetimes in terms of software. Take a
developer from 1999 and drop them into a team today, and
they’d struggle in this strange new world. But the world of the
1990s is equally foreign to today’s developer. The book’s
references to things such as CORBA, CASE tools, and indexed
loops were at best quaint and more likely confusing.

At the same time, 20 years has had no impact whatsoever on
common sense. Technology may have changed, but people

haven’t. Practices and approaches that were a good idea then
remain a good idea now. Those aspects of the book aged well.

So when it came time to create this 20" Anniversary Edition,



we had to make a decision. We could go through and update the
technologies we reference and call it a day. Or we could
reexamine the assumptions behind the practices we
recommended in the light of an additional two decades’ worth
of experience.

In the end, we did both.

As a result, this book is something of a Ship of Theseus.™
Roughly one-third of the topics in the book are brand new. Of
the rest, the majority have been rewritten, either partially or
totally. Our intent was to make things clearer, more relevant,
and hopefully somewhat timeless.

We made some difficult decisions. We dropped the Resources
appendix, both because it would be impossible to keep up-to-
date and because it’s easier to search for what you want. We
reorganized and rewrote topics to do with concurrency, given
the current abundance of parallel hardware and the dearth of
good ways of dealing with it. We added content to reflect
changing attitudes and environments, from the agile movement
which we helped launch, to the rising acceptance of functional
programming idioms and the growing need to consider privacy
and security.

Interestingly, though, there was considerably less debate
between us on the content of this edition than there was when
we wrote the first. We both felt that the stuff that was important
was easier to identify.

Anyway, this book is the result. Please enjoy it. Maybe adopt
some new practices. Maybe decide that some of the stuff we
suggest is wrong. Get involved in your craft. Give us feedback.



But, most important, remember to make it fun.



How the Book Is Organized

This book is written as a collection of short topics. Each topic is
self-contained, and addresses a particular theme. You’ll find
numerous cross references, which help put each topic in
context. Feel free to read the topics in any order—this isn’t a
book you need to read front-to-back.

Occasionally you’ll come across a box labeled Tip nn (such as
Tip 1, Care About Your Craft). As well as emphasizing points in
the text, we feel the tips have a life of their own—we live by
them daily. You’ll find a summary of all the tips on a pull-out
card inside the back cover.

We've included exercises and challenges where appropriate.
Exercises normally have relatively straightforward answers,
while the challenges are more open-ended. To give you an idea
of our thinking, we’ve included our answers to the exercises in
an appendix, but very few have a single correct solution. The
challenges might form the basis of group discussions or essay
work in advanced programming courses.

There’s also a short bibliography listing the books and articles
we explicitly reference.



What’s in a Name?

Scattered throughout the book you’ll find various bits of jargon
—either perfectly good English words that have been corrupted
to mean something technical, or horrendous made-up words
that have been assigned meanings by computer scientists with a
grudge against the language. The first time we use each of these
jargon words, we try to define it, or at least give a hint to its
meaning. However, we're sure that some have fallen through
the cracks, and others, such as object and relational database,
are in common enough usage that adding a definition would be
boring. If you do come across a term you haven’t seen before,
please don’t just skip over it. Take time to look it up, perhaps on
the web, or maybe in a computer science textbook. And, if you
get a chance, drop us an email and complain, so we can add a
definition to the next edition.

Having said all this, we decided to get revenge against the
computer scientists. Sometimes, there are perfectly good jargon
words for concepts, words that we’ve decided to ignore. Why?
Because the existing jargon is normally restricted to a particular
problem domain, or to a particular phase of development.
However, one of the basic philosophies of this book is that most
of the techniques we’re recommending are universal:
modularity applies to code, designs, documentation, and team
organization, for instance. When we wanted to use the
conventional jargon word in a broader context, it got confusing
—we couldn’t seem to overcome the baggage the original term
brought with it. When this happened, we contributed to the
decline of the language by inventing our own terms.



Source Code and Other Resources

Most of the code shown in this book is extracted from
compilable source files, available for download from our
website.[?!

There you’ll also find links to resources we find useful, along
with updates to the book and news of other Pragmatic
Programmer developments.



Send Us Feedback

We'd appreciate hearing from you. Email us at
ppbook@pragprog.com.


mailto:ppbook@pragprog.com

Second Edition Acknowledgments

We have enjoyed literally thousands of interesting
conversations about programming over the last 20 years,
meeting people at conferences, at courses, and sometimes even
on the plane. Each one of these has added to our understanding
of the development process, and has contributed to the updates
in this edition. Thank you all (and keep telling us when we’re
wrong).

Thanks to the participants in the book’s beta process. Your
questions and comments helped us explain things better.

Before we went beta, we shared the book with a few folks for
comments. Thanks to VM (Vicky) Brasseur, Jeff Langr, and Kim
Shrier for your detailed comments, and to José Valim and Nick
Cuthbert for your technical reviews.

Thanks to Ron Jeffries for letting us use the Sudoku example.

Much gratitude to the folks at Pearson who agreed to let us
create this book our way.

A special thanks to the indispensable Janet Furlow, who
masters whatever she takes on and keeps us in line.

And, finally, a shout out to all the Pragmatic Programmers out

there who have been making programming better for everyone
for the last twenty years. Here’s to twenty more.

Footnotes



[1] If, over the years, every component of a ship is replaced as it fails, is the resulting vessel
the same ship?

[2] https://pragprog.com/titles/tpp20


../../../../../https@pragprog.com/titles/tpp20

From the Preface to the First
Edition

This book will help you become a better programmer.

You could be a lone developer, a member of a large project
team, or a consultant working with many clients at once. It
doesn’t matter; this book will help you, as an individual, to do
better work. This book isn’t theoretical—we concentrate on
practical topics, on using your experience to make more
informed decisions. The word pragmatic comes from the Latin
pragmaticus—*“skilled in business”—which in turn is derived
from the Greek npaypatikog, meaning “fit for use.”

This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting
a computer to do what you want it to do (or what your user
wants it to do). As a programmer, you are part listener, part
advisor, part interpreter, and part dictator. You try to capture
elusive requirements and find a way of expressing them so that
a mere machine can do them justice. You try to document your
work so that others can understand it, and you try to engineer
your work so that others can build on it. What’s more, you try to
do all this against the relentless ticking of the project clock. You



work small miracles every day.
It’s a difficult job.

There are many people offering you help. Tool vendors tout the
miracles their products perform. Methodology gurus promise
that their techniques guarantee results. Everyone claims that
their programming language is the best, and every operating
system is the answer to all conceivable ills.

Of course, none of this is true. There are no easy answers. There
is no best solution, be it a tool, a language, or an operating
system. There can only be systems that are more appropriate in
a particular set of circumstances.

This is where pragmatism comes in. You shouldn’t be wedded to
any particular technology, but have a broad enough background
and experience base to allow you to choose good solutions in
particular situations. Your background stems from an
understanding of the basic principles of computer science, and
your experience comes from a wide range of practical projects.
Theory and practice combine to make you strong.

You adjust your approach to suit the current circumstances and
environment. You judge the relative importance of all the
factors affecting a project and use your experience to produce
appropriate solutions. And you do this continuously as the work
progresses. Pragmatic Programmers get the job done, and do it
well.



Who Should Read This Book?

This book is aimed at people who want to become more effective
and more productive programmers. Perhaps you feel frustrated
that you don’t seem to be achieving your potential. Perhaps you
look at colleagues who seem to be using tools to make
themselves more productive than you. Maybe your current job
uses older technologies, and you want to know how newer ideas
can be applied to what you do.

We don’t pretend to have all (or even most) of the answers, nor
are all of our ideas applicable in all situations. All we can say is
that if you follow our approach, you’ll gain experience rapidly,
your productivity will increase, and you’ll have a better
understanding of the entire development process. And you'll
write better software.



What Makes a Pragmatic Programmer?

Each developer is unique, with individual strengths and
weaknesses, preferences and dislikes. Over time, each will craft
their own personal environment. That environment will reflect
the programmer’s individuality just as forcefully as his or her
hobbies, clothing, or haircut. However, if you're a Pragmatic
Programmer, you’ll share many of the following characteristics:

Early adopter/fast adapter

You have an instinct for technologies and techniques, and
you love trying things out. When given something new,
you can grasp it quickly and integrate it with the rest of
your knowledge. Your confidence is born of experience.

Inquisitive

You tend to ask questions. That’s neat—how did you do
that? Did you have problems with that library? What’s
this quantum computing I've heard about? How are
symbolic links implemented? You are a pack rat for little
facts, each of which may affect some decision years from
now.

Critical thinker

You rarely take things as given without first getting the
facts. When colleagues say “because that’s the way it’s
done,” or a vendor promises the solution to all your
problems, you smell a challenge.

Realistic
You try to understand the underlying nature of each
problem you face. This realism gives you a good feel for



how difficult things are, and how long things will take.
Deeply understanding that a process should be difficult
or will take a while to complete gives you the stamina to
keep at it.

Jack of all trades

You try hard to be familiar with a broad range of
technologies and environments, and you work to keep
abreast of new developments. Although your current job
may require you to be a specialist, you will always be able
to move on to new areas and new challenges.

We’ve left the most basic characteristics until last. All Pragmatic
Programmers share them. They’re basic enough to state as tips:

Tip 1 Care About Your Craft

We feel that there is no point in developing software unless you
care about doing it well.

Tip 2 Think! About Your Work

In order to be a Pragmatic Programmer, we're challenging you
to think about what you’re doing while you’re doing it. This isn’t
a one-time audit of current practices—it’s an ongoing critical
appraisal of every decision you make, every day, and on every
project. Never run on auto-pilot. Constantly be thinking,
critiquing your work in real time. The old IBM corporate motto,
THINK!, is the Pragmatic Programmer’s mantra.

If this sounds like hard work to you, then you’re exhibiting the
realistic characteristic. This is going to take up some of your



